Epidemiologic Notes and Reports

Congenital Malaria in Children of Refugees Washington, Massachusetts, Kentucky

Reports of congenital malaria in the United States have increased along with the marked rise in imported cases of malaria (1). From 1966 through 1979, 13 cases of Congenital malaria were reported to CDC, an average of about 1 per year. As of February 9,1981, CDC has received reports of 7 cases of congenital malaria with onset in 1980. The first case described below is typical of the congenital malaria cases now being reported in the United States. The other 2 cases illustrate that malaria should be suspected in the asymptomatic infants recently born of women in whom malaria has been found.

Case 1. A 23 -day-old female infant was brought to the emergency room of a Seattle hospital on August 22, 1980, after a 2-day history of fever. The infant was born in Seattle on July 29 to a $13^{1 / 2}$-year-old Laotian refugee who arrived in the United States in February 1980 from a refugee camp in Thailand. The infant had been well when examined by a physician at 2 weeks of age.

In the emergency room, the physical examination revealed a temperature of 39.9 C (103.8 F), mild jaundice, and hepatosplenomegaly. Cultures of blood, urine, and cerebrospinal fluid (CSF) were obtained, and the patient was given ampicillin and gentamicin for presumed sepsis. CSF examination was normal. The infant's serum bilirubin was $4.1 \mathrm{mg} /$ dl, the hematocrit was 28%, the white blood cell count was $6,900 / \mathrm{mm}^{3}$, and the platelets were $32,500 / \mathrm{mm}^{3}$. The hematology technician noticed that $1 \%-2 \%$ of the red blood cells on smear contained malaria parasites, and the diagnosis of Plasmodium vivax malaria was made. The infant was treated with 1 dose of oral chloroquine phosphate 10 mg base/ kg , followed by 5 mg base $/ \mathrm{kg}$ at 6,24 , and 48 hours after initial treatment. The infant became afebrile by the second hospital day, and blood films became negative for malaria by the third day. The patient was discharged on August 25, when all cultures remained negative and the thrombocytopenia had resolved. At follow-up 2 weeks after discharge, the infant was clinically well without hepatosplenomegaly, and thick and thin blood smears for malaria were negative.

The infant's mother had been asymptomatic and afebrile at prenatal examinations in April and June 1980. Because of an elevation in her temperature to $38 \mathrm{C}(100.4 \mathrm{~F})$ at the time of delivery, cultures were taken and she was treated with ampicillin without sequelae. When congenital malaria was diagnosed in her daughter 3 weeks postpartum, smears were reviewed from the mother's routine blood counts in April and at the time of delivery. Careful search revealed P. vivax parasites. The mother was treated with chloroquine and primaquine.

Congenital Malaria - Cor. tinued

Case 2. After living for 1 year in a refugee camp in Indonesia, a Vietnamese woman arrived in the United States in May 1980. Six months later she gave birth to a male infant. At the time of delivery, thin blood smears from the mother were examined for malaria, but no parasites were seen. Three days postpartum she returned to the hospital with fever and was found to have vivax malaria, which was treated with chloroquine and primaquine without sequelae, despite a G6PD deficiency. At that time, the baby was well and his blood smears were negative.

In November, at 19 days of age, the baby was admitted to a Boston hospital following a 2-day history of fever. The infant was alert and responsive. His temperature was 39.5 C (103.1 F), and he had hepatosplenomegaly, with the liver 1 cm below the umbilicus. A blood smear revealed a parasitemia with P. vivax, calculated at $54,000 / \mathrm{mm}^{3}$, and he was treated with chloroquine. The infant responded well, and the parasitemia was undetectable by the third day of treatment.

Case 3. A pregnant 17 -year-old Cambodian refugee arrived in the United States on June 30, 1980. Two months later she developed fever and went into labor, giving birth to a female infant on August 29. The mother's admission blood smears revealed P. vivax parasites, and she received antimalarial therapy after delivery. The newborn infant, who appeared well, was not tested or treated for malaria. At 16 days of age, the infant developed fever and irritability, and vivax malaria was diagnosed from a blood smear. When admitted to a Kentucky hospital on September 18, the infant was found to have jaundice, hepatosplenomegaly, anemia, and thrombocytopenia. Treatment with chloroquine was given, and the parasites were cleared from the blood by September 22.
Reported by GJ Mertz, MD, TC Quinn, MD, R Jacobs, MD, Depts of Medicine and Pediatrics, University of Washington, Seattle; J Allard, PhD, State Epidemiologist, Washington State Dept of Social and Health Services; DJ Wyler, MD, Div of Geographic Medicine, Tufts University, Boston; NJ Fiumara, MD, State Epidemiologist, Massachusetts State Dept of Public Health; G Adams, MD. Children's Hospital, University of Louisville; JW Skaggs, DVM, Acting State Epidemiologist, Kentucky State Dept for Human Resources; Vector Bology Div, and Parasitic Diseases Div, Center for Infectious Diseases, CDC.
Editorial Note: Congenital infect on can occur with all 4 species of human malaria. It remains unclear how and when trunsmission from mother to infant occurs. Some infants have been born with cord blood already positive for malaria; parasites have also been found in fetal tissues at autopsy. On the other hand, some cases in nonmalarious areas have had incubation periods-usually 9 days to 1 month-consistent with infection occurring at parturition $(2,3)$. In infants the presenting signs of malaria, as in sepsis, can be subtle and quite variable. The mother may complain that the infant feeds poorly and is restless or drowsy. Pallor and cyanosis may be seen, and vomiting and diarrhea may occur. The classical malarial paroxysm of chills and sweats is usually absent, although fever is usually present $(3,4)$. Congenital malaria should be considered in the differential diagnosis of any ill infant born to a mother who may have been exposed to malaria, especially if the infant has jaundice and hepatosplenomegaly. The interval between malaria exposure in the mother and congenital malaria in the infant can be prolonged. One case of congenital malaria due to P. malariae occurred in the United States in an infant born 25 years after its mother immigrated from China (5).

In individuals with some immunity due to chronic exposure to malaria infection, parasitemia may be low enough to be missed on routine blood-count examination, or even on thin smears made to diagnose malaria. Thick smears are much more sensitive than thinsmear preparations in detecting malaria, and should be used when malaria is suspected. Thin smears are helpful, but not necessary, for species identification. Serologic tests

Congenital Malaria - Continued

usually cannot distinguish between current and past infection, but may be useful in retrospectively determining the species of infection.

When chloroquine is used to treat sensitive strains of malaria, an oral route of administration, including gavage, should be used in preference to the intramuscular route, which should be reserved for cases with severe vomiting or cerebral malaria. Infants and children are susceptible to chloroquine overdose, which can cause cardiovascular collapse and death $(6,7)$. Treatment with primaquine (radical cure) is not necessary for congenitally acquired P. vivax or P. ovale infection because congenital malaria, like transfusion malaria, has no exoerythrocytic (liver) stage.
References

1. CDC. Malaria - United States, 1980. MMWR 1980;29:413-5.
2. Covell G. Congenital malaria. Trop Dis Bull 1950;47:1147-67.
3. Bruce-Chwatt LJ. Malaria, In: Jelliffe DB, Stanfield JP. Diseases of children in the subtropics and tropics. 3rd ed. London: Edward Arnold Ltd., 1978:827-56.
4. Bruce-Chwatt LJ. Essential malariology. London: William Heinemann Medical Books, 1980.
5. Shaw PK, Brodsky RE, Schultz MG. Malaria surveillance in the United States. J Infect Dis 1976; 133:95-101.
6. Cann HM, Verhulst HL. Fatal acute chloroquine poisoning in children. Pediatrics 1961;27:95-102.
7. Geddes TG. Letter: acute malaria in newborn infants. Br Med J 1970;3:711.

Current Trends

Tuberculosis - United States, 1980

In 1980, 27,983 tuberculosis cases were reported to CDC. This figure, considered a provisional total until final corrected data for 1980 are received by the Tuberculosis Control Division, represents an increase of 0.6% (166 cases) from the 1979 provisional

TABLE 1. Provisional tuberculosis cases by region, United States, 1979-1980

	Cases		Change in cases	
HHS Regiant	1979	$\mathbf{1 9 8 0}$	Number	Percent
I	859	803	-56	-6.5
II	3,135	3,395	260	8.3
III	3,207	2,977	-230	-7.2
IV	6,635	6,618	-17	-0.3
V	4,273	4,156	-117	-2.7
VII	3,459	3,284	-175	-5.1
VIII	718	698	-20	-2.8
IX	311	346	35	11.3
X	4,632	4,967	335	7.2
Total	588	739	151	25.7

[^0]
Tuberculosis - Continued

total. The provisional case rate of 12.4 per 100,000 in 1980 is 1.6% less than in 1979. Regions II, VIII, IX, and X reported more provisional cases than in 1979. All other regions reported fewer cases (Table 1).

During the past 25 years the number of reported cases of tuberculosis has decreased approximately 4% per year. If the final figure substantiates an increase in tuberculosis cases from 1979 to 1980, it would be only the second time in that 25 -year period that the number of reported cases increased.* There are at least 2 causes of this increase. One is the large number of tuberculosis cases among Indochinese refugees (1,2). Another is the use of a 53 -week "reporting year" in 1980 . Because the usual 52 -week period contains only 364 days, it is necessary periodically to extend the reporting year by 1 week to include the extra days. Other causes may become apparent when the final data are available for analysis.
Reported by the Tuberculosis Control Div, Center for Prevention Services, CDC.

References

1. CDC. Tuberculosis among Indochinese refugees - United States, 1979. MMWR 1980;29:383-4, 389-90.
2. CDC. Follow-up on tuberculosis among Indochinese Refugees. MMWR 1980;29:573.
*Excluding 1975, when changes occurred in the criteria for counting cases.

TABLE I. Summary - cases of specified notifiable diseases, United States [Cumulative tota/s include revised and delaved reports through previous weeks.]						
DISEASE	5th WEEK ENDING		$\begin{gathered} \text { MEDIAN } \\ 1976.1980 \end{gathered}$	CUMULATIVE, FIRST 5 WEEKS		
	$\begin{gathered} \text { Fibruary } 7 \\ 1991 \\ \hline \end{gathered}$	$\begin{gathered} \text { February } 2 \\ 1880 \end{gathered}$		$\begin{gathered} \text { February } 7 \\ 1981 \\ \hline \end{gathered}$	$\begin{gathered} \text { Fibruary } 2 \\ 1980 \end{gathered}$	$\begin{aligned} & \text { MEDIAN } \\ & 1976-1980 \end{aligned}$
Asaptic meningitis	61	59	32	337	311	197
Brucellosis	3	10	3	9	14	14
Chickenpox	4,801	5,488	5,488	22.872	21.017	23.578
Diphtheria	-	-	2	2	-	${ }_{5}^{8}$
Encephalitis: Primary (arthropod-borna \& unspec.)	6	13	13	62	53	53
Post-infectious	3	3	4	8	10	10
Hepatitis, Viral: Type B	359	303	273	1.640	1.349	1.349
Type A	528	553	587	2,178	2.345	2,605
Type unspecified	221	210	172	1,022	877	823
Malaria	33	35	7	123	129	35
Measles (rubeola)	40	195	402	173	543	1.113
Meningococcal infections: Total	113	61	56	408	261	210
Civilian Military	113	61	55	407	258 3	209 1
Mumps	94	214	491	459	1.098	1,782
Pertussis	27	36	24	73	98	134
Rubella (German measles)	41	80	122	205	263	679
Tetanus	2	-	1	7	5	3
Tuberculosis	487	400	544	2,055	1,921	2,342
Tularemia	2	2	2	11	8	10
Typhoid fever	15	7	7	45	16	26
Typhus fever, tick-borne (Rky. Mt. spotted)	-	1	1	6	3	4
Venereal diseases: Gonorrhea: Civilian Military	20.581 660	19.189	19,163	96,176 2,820	92,614 2,510	92,614 2,762
Syphilis. primary \& secondary: Civilian	654	753 518	577 500	2.820 2.851	2.510 2.500	2.762 2.298
Mates Military	1	7	7	29	2.52	29
Rabies in animals	88	100	47	428	419	221

TABLE II. Notifiable diseases of low frequency, United States

	CUM. 1981		CUM. 1981
Anthrax	-	Poliomyalitis: Total	-
Botulism Pa. 1, N. Mex. 1, Calif. 2	8	Paralytic	-
Cholera	-	Psittacosis Minn. 1	5
Congenital rubella syndrome	-	Rabies in man	-
Leprosy Tex. 1, Ariz. 1, Calif. 1, Hawaii 1	14	Trichinotis Conn. 1, Mo. 1	16
Leptospirosis Mo. 1, Calif. 1	4	Typhus fever, flea borne (endemic, murine)	-
Plague	-		

All delayed reports and corrections will be included in the following week's cumulative totals.

TABLE III. Cases of specified notifiable diseases, United States, weaks ending
February 7, 1981 and February 2, 1980 (5th week)

heporting Ahea	ASEPTIC MENIN GITIS	BRU. CEELosis	$\begin{aligned} & \text { CHICKEN- } \\ & \text { POX } \end{aligned}$	OIPHTHEAIA		ENCEPHALITIS			HEPATITIS (VIRAL), BY TYPE			malaria	
						Primary		Past-infections	B	A	Unspecifiad		
	1981	1981	1981	1981	$\begin{gathered} \text { CUM. } \\ 1981 \end{gathered}$	1981	1980	1981	1981	1981	1981	1981	$\begin{aligned} & \hline \text { CUM. } \\ & 1981 \\ & \hline \end{aligned}$
UNITED States	61	3	4,801	-	2	6	13	3	359	528	221	33	123
NEW ENGLAND	2	-	$\begin{array}{r} 442 \\ 88 \end{array}$	-	-	-	3	-	10	12	12	3	7
N.H.	-	-				-	3		-				1
V_{t}	1	-	19	-	-	-	-	-	-	1	-	-	1
Mass.	1	-	31	-	-	-	$\overline{7}$	-	5	3	-	$\overline{7}$	4
Conn.	1	-	145	-	-	-	2	-	3	4	12	1	1
	-	-	$\begin{array}{r} 35 \\ 120 \end{array}$	-	-	-	1	-	1	4	-	1	1
Mid. ATLANTIC	15	-	283	-	-	1	-	1	51	37	16	4	13
Upstate N.Y.	5	-	115	_	-	1	-	1	11	17	4	-	4
N.Y. City	1	-	50	-	-	-	-	-	23	9	3	4	8
$\mathrm{Pa}_{\text {a }}$ N.	5	-	$\begin{gathered} \text { NN } \\ 118 \end{gathered}$	-	-	-	-	-	17	11	9	-	-
									NA	NA	NA	-	1
E.N. CENTRAL	6	-	2,079	-	-	2	2	-	37	74	22	-	3
Ind.	-	-	196	-	-	1	2	-	6	9	3	-	-
III.	-	-	325	-	-	-	-	-	11	26	8	-	-
Mich.	-	-	287	-	-	-	-	-	6	22	2	-	-
Mich.Wis.	6	-	$\begin{aligned} & 806 \\ & 465 \end{aligned}$	-	-	1	-	-	13	16	9	-	3
		-				-			1	1	-	-	-
W.N. CEN Minn. lowa Mo. N. Dak. S. Dak. Nebr. Kans.	3	1	860	-	-	-	-	-	9	24	8	1	2
	-	1	5	-	-	-	-	-	-			-	
	3	-	256	-	-	-	-	-	2	4	2	1	1
	-	-	10	-	-	-	-	-	2	10	3	-	1
	-	-	22	-	-	-	-	-	-	-	-	-	-
	-	-	62	-	-	-	-	-	2	1	2	-	-
	-	-	498	-	-	-	-	-	3	9	1	-	-
S. ATLANTIC Del,	7	-	543	-	1	-	1	-	68	54	38	1	6
Md.	-	-	-	-	-	-	-	-	2	-	2	-	-
D.C.	-	-	95	-	-	-	1	-	13	5	10	-	-
Va_{a}.	-	-	1	-	-	-	-	-	1	5	-	$\overline{1}$	3
W. Va	-	-	21	-	-	-	-	-	6	5	6	1	3
N.C.	-	-	148	-	-	-	-	-	2	8	1	-	-
S.c.	2	-	NN	-	-	-	-	-	8	4	5	-	-
Ga.	1	-	2	-	-	-	-	-	11	4	-	-	$\bar{\square}$
Fla_{6}	4	-	$\begin{array}{r} 21 \\ 255 \end{array}$	-	1	-	-	-	9	9	-	-	2
									16	19	14	-	
E.S. CENTRAL Ky. Tann. Ala, Mis.	6	1	75	-	-	-	1	1	19	24	1	-	-
	2	1	33	-	-	-	-	-	7	4	-	-	-
	-	-	NN	-	-	-	1	-	6	7	1	-	-
	2	-	38	-	-	-	-	-	5	1	-	-	-
	2	-	4	_	-	-	-	1	1	12	-	-	-
W.S CENTRAL Ark. La. Okla. Tax.	5	-	215	-	-	-	1	-	36	67	34	2	4
	-	-	9	-	-	-	-	-	2	5	-	-	1
	-	-	NN	-	-	-	1	-	11	16	1	-	1
	1	-	N	-	-	-	1	-	12	3	2	1	1
	4	-	206	-	-	-	-	-	11	43	31	1	1
MOUNTA Ment Idaho Wyo. Colo. N. Mex. Ariz. Ulah Nev.	1	1	86	-	-	2	2	-	15	57	38	1	3
	1	1							1	3			-
	-	-	1	-	-	-	_	-	-	9	-	-	-
	-	-	-		-		-		-	-	-	-	-
	1	-	83	-	-	-	-	-	3	11	3	-	1
		-		-	-	-	-		4	6	1	-	1
	-	1	NN	-	-	-	-	-	6	20	25	1	2
	-	1	NN	$=$	-	2	2	-	6	20	25	1	2
	-	-	2	-	-	2	2	-	$\overline{1}$	3	5	-	-
PACIFIC Wash. Oreq. Calif. Alaska Hawali	16	-	218	-	1	1	3	1	114	179	52	21	85
	3	-	186	-	-	1	-	-	7	8	4	1	4
	2	-	3	-	-	-	1	-	13	18	2	2	3
	10	-	-	-	-	-	2	1	91	151	46	18	78
	-	-	8	-	1	-	-	-	2	-	-	-	-
	1	-	21	-	-	-	-	-	1	2	-	-	-
$\begin{aligned} & \text { Guam } \\ & \text { P.R. } \end{aligned}$	NA	NA	NA	NA	-	NA	-	-	Na	Na	NA	NA	-
V.I.	-	-	8	-	-	-	-	-	-	-	-	Na	2
	NA	NA	NA	Na	-	NA	-	-	NA	NA	NA	Na	-
ac. Trust Terr.	NA	NA	NA	NA	-	NA	-	-	NA	NA	Na	NA	-

All Not notifiable. NA: Not available.
All delayed reports and corrections will be included in the following week's cumulative totals.

TABLE III (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending February 7, 1981 and February 2, 1980 (5th week)

REPORTING AREA	MEASLES (RUBEOLA)			MENINGOCOCCAL INFECTIONS TOTAL			MUMPS		PERTUSSIS	fubella		TETANUS cum. 1981
	1981	$\begin{aligned} & \text { CUM. } \\ & 1981 \end{aligned}$	$\begin{aligned} & \text { CUM. } \\ & 1980 \end{aligned}$	1981	CUM. 1981	CUM. 1980	1981	CUM 1881	1981	1981	CUM. 1981	
UNITED STATES	40	173	543	113	408	261	94	459	27	41	205	7
NEW ENGLAND	1	6	29	12	36	10	3	21	-	9	36	-
Maine	-	-	-	2	2	-	1	4	-	6	23	-
N.H.	-	2	10	-	2	-	-	2	-	1	8	-
Vt.	-	1	17	-	-	-	-	1	-	-	-	-
Mass.	-	-	-	1	11	5	1	7	-	2	5	-
R.I.	-	-	1	1	3	-	1	3	-	-	-	-
Conn.	1	3	1	8	18	5	-	4	-	-	-	-
MID. ATLANTIC	13	58	108	8	47	35	8	41	1	4	40	1
Upstate N.Y.	12	34	31	2	14	18	3	14	-	-	15	-
N.Y. City	1	9	29	1	1	8	1	7	-	3	8	1
N.J.	-	5	14	2	18	6	2	8	-	1	15	-
Pa.	-	10	34	3	14	3	2	12	1	-	2	-
E.N. CENTRAL	1	5	54	13	35	30	33	134	7	5	38	1
Ohio	-	-	8	6	12	16	10	26	2	-	-	-
Ind.	-	-	1	-	4	4	6	23	2	3	16	-
III.	-	-	8	3	4	2	4	15	-	-	7	-
Mich.	1	5	22	1	12	8	13	52	1	-	5	1
Wis.	-	-	15	3	3	-	-	18	2	2	10	-
W.N. CENTRAL	-	-	49	5	29	6	7	38	-	1	6	2
Minn.	-	-	30	3	19	1	-	-	-	-	-	1
lawa	-	-	.	1	5	-	5	13	-	-	-	-
Mo.	-	-	17	1	2	3	1	1	-	-	-	1
N. Dak.	-	-	-	-	-	1	-	-	-	-	-	-
S Dak.	-	-	-	-	1	1	-	-	-	-	-	-
Nebr.	-	-	2	-	-	-	-	-	-	-	-	-
Kans.	-	-	-	-	2	-	1	24	-	1	6	-
S. ATLANTIC	9	28	156	32	109	61	11	84	1	5	15	1
Del.	-	-	-	-	4	-	-	2	-	-	-	-
Md.	-	-	1	2	4	9	1	13	-	-	-	-
D.C.	-	-	-	-	1	-	-	-	-	-	-	-
Va .	-	-	21	3	10	7	I	12	-	-	4	-
W. Va	-	2	1	1	5	3	1	16	-	-	3	-
N.C.	-	-	1	3	16	11	-	3	-	-	2	-
S.C.	-	-	-	4	15	5	-	1	-	3	3	1
Ga.	8	16	103	7	21	8	4	6	1	-	-	-
Fla.	1	10	29	12	33	18	4	11	-	2	3	-
E.S. CENTRAL	-	-	47	B	29	26	3	13	3	1	4	-
Ky.	-	-	19	4	9	5	1	6	3	1	3	-
Tenn.	-	-	2	-	9	10	1	4	-	-	1	-
Ala.	-	-	6	1	6	10	1	3	-	-	-	-
Miss.	-	-	20	3	5	1	-	-	-	-	-	-
W.S. CENTRAL	5	13	12	16	58	23	5	25	3	3	12	-
Ark.	-	-	1	4	9	2	-	-	-	-	-	-
La.	-	-	-	2	4	4	3	3	-	-	-	-
Okla.	-	1	1	1	1	2		-	-	-	-	-
Tex.	5	12	10	9	44	15	2	22	3	3	12	-
MOUNTAIN	-	5	23	6	24	21	1	16	1	-	2	1
Mont.	-	-	-	-	1	1	-	-	-	-	-	-
Idaho	-	-	-	-	2	1	1	2	-	-	-	-
Wyo.	-	-	-	-	-	1	-	-	-	-	-	-
Cola.	-	-	1	4	7	7	-	7	-	-	-	-
N. Mex.	-	-	-	1	5	2	-	-	1	-	-	-
Ariz.	-	-	8	1	7	5	-	4	1	-	1	1
Utah	-	$\overline{5}$	12	-	2	1	-	1	-	-	1	-
Nev.	-	5	2	-	-	3	-	2	-	-	-	-
PACIFIC	11	50	65	13	41	49	23	107	11	13	52	1
Wash.	-	-	11	3	7	9	8	36	1	4	11	-
Orag.	-	-	-	$\stackrel{-}{-}$	1	5	4	9		-		-
Calif.	11	57	52	10	29	35	11	58	10	9	41	1
Alaska	-	-	-	-	1	-	I	1		-	-	-
Hawaii	-	1	2	-	3	-	-	3	-	-	-	-
Guam	Na	$\stackrel{+}{*}$	1	-	-	-	NA	-	NA	Na	-	-
P.R.	5	12	1	-	1	2	4	8	-	-	-	-
V.I.	NA	-	-	-	-	-	NA	-	NA	Na	-	-
Pac. Trust Terr.	NA	-	2	-	-	-	Na	-	Na	Na	-	-

NA: Not available.
All delayed reports and corrections will be included in the following week's cumulative totals.

TABLE III (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending
February 7, 1981 and February 2, 1980 (5th week)

Reporting area	TUBERCULOSIS		$\begin{array}{\|c\|} \hline \text { TULA } \\ \text { REMIA } \\ \hline \text { CUM. } \\ \hline 1981 \\ \hline \end{array}$	TYPHOID FEVER		TYPHUS FEVER (Tick-barne) (RMSF)		VENEREAL DISEASES (Civilian)						RABIES (in Animals) CUM. 1981		
			gonorrhea			SYPhilis (Pri. 8 Sec.)										
	1981	$\begin{aligned} & \text { CUM. } \\ & 1981 \\ & \hline \end{aligned}$		1981	$\begin{aligned} & \text { CUM. } \\ & \text { 1981 } \end{aligned}$			1981	$\begin{aligned} & \hline \text { CUM. } \\ & \text { 1981 } \\ & \hline \end{aligned}$	1981	$\begin{aligned} & \text { CUM. } \\ & 1981 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CUM. } \end{aligned}$	1981		$\begin{aligned} & \text { CUM. } \\ & 1981 \\ & \hline \end{aligned}$	CUM. 1980
UNITED States 487		2,055		11	15	45	-	6	20,581	96,176	92.614	654	2.851	2,500	429	
NEW England Main! N.H. V_{t}	8	53	-	-	1	-	-	483	2.568	2,707	23	75	69	-		
	-	7	-		-		-	19	124	176	-	1	-	-		
	-	-	-		-	-	-	14	92	102	-	-	-	-		
Mass.	-	1	-	-	$\overline{7}$	-		2	40	82	$\overline{9}$	1	-	-		
	4	31	-	-	1	-	-	164	970	997	9	40	38	-		
R.I. Conn.	2	11	-	-	-	-	-	13 271	\% 1111	123 1,227	14	8 28	$2 \begin{array}{r}2 \\ 29\end{array}$	-		
Mid. ATLANTIC Upstate N.Y. N.Y. City N.J. Pa.	77	332	-	1	5	-	-	3,193	10.845	9.553	130	476	372	-		
	12	59	-	-	1	-	-	597	1.353	1.204	15	48	19	-		
	40	133	-	1	4	-	-	950	4.125	4.287	86	292	268	-		
	9	79	-	-	-	-	-	969	2.650	1.514	8	52	36	-		
	16	61	-	-	-	-	-	677	2.717	2.548	21	84	49	-		
E.N. CENTRAL Ohio Ind. III.	71	296	-	-	2	-	-	3,278	14,571	16.668	34	115	237	59		
	9	52	-	-	-	-	-	1,427	6,063	4.746	7	35	29	2		
	-	23	-	-	$\bar{\square}$	-	-	147	1,157	1.646	3	13	28	4		
Mich. Wis.	34	130	-	-	2	-	-	661	2.656	5.208	-	23	134	28		
	23	82	-	-	-	-	-	781	3,402	3.350	23	32	39	25		
	5	9	-	-	-	-	-	262	1,293	1.718	1	12	7	25		
W.N. CE Minm. lowa Mo. N. Dak. S Dak. Nebr. Kans.	21	56	-	-	1	-	1	915	4.961	4.084	15	50	22	166		
	8	11	-	-	-	-	-	157	760	693	7	14	7	30		
	4	13	-	-	-	-	-	73	455	480	2	3	2	67		
	6	14	-	-	-	-	1	440	2.327	1,689	6	28	13	14		
	-	4	-	-	$\overline{1}$	-	-	5	46	52	-	-	-	37		
	-	5	-	-	1	-	-	25	126	127	-	-	-	-		
	3	9	-		-	-	-	75	370	359	-	2	-	7		
	3	9	-	-	-	-	-	140	877	694	-	3	-	11		
§ ATLANTIC Del	88	474	2	2	6	-	3	5,209	24.262	22.548	147	723	575	32		
Md.D.	1	3	1	-	-	-	-	53	395	342	-	1	2	-		
	1	41	-	-	$\bar{\square}$	-	-	589	2.598	2.047	10	55	55	-		
$\begin{aligned} & \mathrm{D} . \mathrm{C} . \\ & \mathrm{V} \text {. } \end{aligned}$	4	47	-	-	1	-	-	281	1.544	1.550	13	68	42	-		
W. ${ }_{\text {Na. }}$	18	42	-	-	-	-	-	337	2.299	2,010	13	60	47	6		
	5	20	-	1	3	-	-	65	314	302	-	-	2	2		
Sic.	20	105	-	-	1	-	3	781	4.063	3,456	4	55	50	-		
	9	39	1	-	-	-	-	517	2,244	2.327	${ }^{8}$	57	20	1		
Fla.	12	52	-	-	-	-	-	815	5,012	4.134	35	179	157	15		
	18	125	-	1	1	-	-	1,771	5,793	6.380	64	248	200	8		
E.s. CENTRAL	43	170	2	-	1	-	2	1,605	8.042	7.169	65	222	215	22		
Tenn.	10	46	2	-	-	-	-	155	1,014	1.048	-	11	14	5		
Al_{a}.	22	60	-	-	-	-	1	501	2,860	2,521	38	85	94	13		
Miss.	11	64	-	-	-	-	-	715	2,810	1,971	17	71	35	4		
	-	-	-	-	1	-	1	234	1,358	1.629	10	55	72	-		
W.S CENTRAL Ark,	26	135	3	3	3	-	-	1,897	14.185	11.566	110	694	463	89		
$\begin{aligned} & \mathrm{La}_{\mathrm{a}} \\ & \mathrm{Oklax}_{\mathrm{l}} \\ & \mathrm{~T}_{\mathrm{Ex}} . \end{aligned}$	3	8	-	-	-	-	-	144	776	784	8	12	14	21		
	1	28	2	-	-	-	-	453	2.123	1.555	-	108	100	5		
	NA	29	-	1	1	-	-	258	1.385	1.261	4	18	5	12		
	22	70	1	2	2	-	-	1.042	9.901	7.966	100	556	344	51		
MOUNTAIN	7	42	4	1	2	-	-	585	3.219	3.637	21	82	61	10		
Idaho	1	2	1	1	2	-	-	22	118	123	-	1	-	10		
Wyo.	1	4	1	-	-	-	-	16	145	192	3	5	2	-		
Colo.	$=$	1	-	-	-	-	-	23	97	102	-	1	3	-		
N. Mex.	-	4	1	-	-	-	-	19	831	939	1	15	19	-		
Ariz.	$\overline{5}$	9	-	-	-	-	-	153	474	570	-	15	9	-		
$\mathrm{Ut}_{\text {tah }}$	5	19	-	-	-	-	-	238	904	889	-	17	20	-		
Nev.	-	-	1	-	-	-	-	25	166	191	-	-	4	-		
	-	3	-	-	-	-	-	89	484	631	17	28	4	-		
PACIfic																
Wash.	146	497	-	8	24	-	-	3,416	13,523	14.682	109	414	486	50		
$\mathrm{O}_{\text {reg. }}$	6	24	-	-	-	-	-	230	943	1,347	-	-	29	-		
Calif.	-	12	-	1	1	-	-	404	1.113	934	1	9	10	-		
AlaskaHawaii	137	453	_	7	21	-	-	2,651	10.817	11.761	107	395	437	48		
	-	1	-	-	-	-	-	78	345	385	-	1	1	2		
Hawaii	3	7	-	-	2	-	-	53	305	255	1	9	9	-		
Guam																
P.R.	NA	-	-	NA	-	NA	-	NA	-	15	NA	55	11	-		
V.I.	a	-	-	-	-	-	-	104	308	126	16	55	31	2		
Pac. Trust Terr	NA	-	-	Na	-	NA	-	NA	-	11	NA	-	3	-		
NA: Not Terr	Na	-	-	NA	-	NA	-	NA	-	66	NA	-	-	-		

All delavediable.
dayed reports and corrections will be included in the following week's cumulative totals.

TABLE IV. Deaths in 121 U.S. cities,* week ending
February 7, 1981 (5th week)

REPORTING AREA	All Causes, by age (Years)					$\begin{aligned} & \text { P\& \& le } \\ & \text { TOTAL } \end{aligned}$	REPORTING AREA	All Causes, by age (years)					$\left\lvert\, \begin{aligned} & \mathrm{P} \mathrm{\&}_{8}^{* * *} \\ & \text { TOTAL } \end{aligned}\right.$
	$\begin{gathered} \text { ALL } \\ \text { AGES } \end{gathered}$	>65	45-64	25.44	<1			$\begin{gathered} \text { ALL } \\ \text { AGES } \end{gathered}$	>65	45.64	25.49	<1	
NEW ENGLAND	675	473	155	19	14	79	S. ATLANTIC	1,248	793	288	79	42	82
Boston, Mass.	205	124	62	11	6	31	Atlanta, Ga	139	88	24	10	13	7
Bridgaport, Conn.	40	30	7	1	-	7	Baltimore, Md.	231	147	56	17	3	9
Cambridga, Mass.	27	20	7	-	-	6	Charlotte, N.C.	85	59	17	6	-	8
Fall River, Mass.	35	29	6	-	-	1	Jacksonville, Fla.	120	79	32	3	3	6
Hartiord, Conn.	43	31	11	-	-	1	Miami, Fla.	97	48	32	6	4	6
Lowell, Mass.	28	24	2	1	-	1	Norfolk, Va.	52	32	12	2	3	12
Lynn, Mass.	31	25	3	3	-	1	Fichmond, Va.	88	50	24	8	2	6
New Badford. Mass.	29	24	4	-	-	2	Savannah, Ga.	39	28	6	2	2	4
New Haven. Conn.	47	29	13	1	2	7	St. Petarsburg, Fla.	120	100	16	2	2	8
Providence, R.I.	60	30	16	1	2	4	Tampa, Fla.	81	60	13	2	3	10
Somerville, Mass.	12	11	1	-	-	4	Washington, D.C.	162	83	51	20	5	4
Springlield, Mass.	32	24	5	-	3	4	Wilmington, Del.	34	22	5	1	2	2
Watarbury, Conn.	35	28	5	1	1	5							
Worcester, Mass.	51	36	13	-	-	5							
							E.S. CENTRAL	838	537	209	46	27	62
							Birmingham, Ala.	146	88	39	6	9	7
MID ATLANTIC	2,909	1,937	655	184	69	161	Chattanooga, Tenn.	69	50	13	5	-	7
Albany. N.Y.	54	38	12	1	1	3	Knoxville, Tenn.	43	28	12	1	2	2
Allentawn, Pa.	25	16	7	2	-	-	Louisville, Ky.	127	86	29	6	2	14
Buffalo, N.Y.	110	73	28	8	-	14	Memphis. Tenn.	169	109	40	13	1	12
Camden, N.J.	34	18	12	2	1	2	Mobile, Ala.	60	44	12	3	1	5
Elizabath, N.J.	30	24	4	2	-	2	Montgomery, Ala.	63	37	17	3	5	1
Erie, Pa. ${ }^{+}$	45	29	14	1	-	1	Nashville. Tenn.	161	95	47	9	7	14
Jersey City, N.J.	83	48	31	1	3	3							
Nawark, N.J.	65	36	20	4	1	2							
N. Y. City, N.Y.	1.541	1,038	313	111	41	80	W.S. CENTRAL	1,985	1,198	509	154	58	105
Patarson, N.J.	25	12	7	5	1	-	Austin, Tex.	58	39	9	5	1	5
Philadalphia, Pa. \dagger	477	302	116	33	11	30	Baton Rouga, La.	41	30	6	-	3	4
Pitsburgh, Pa. \dagger	70	43	22	3	1	2	Corpus Christi, Tex.	53	35	11	2	5	4
Reading. Pa.	36	27	7	2	-	4	Dallas, Tex.	217	139	53	16	4	11
Rochester, N. Y.	118	88	22	2	5	10	El Pasa, Tex.	43	27	12	2	2	8
Schenectady, N.Y.	26	18	7	1	-	1	Fort Worth, Tex.	115	62	31	6	13	15
Scranton, Pa. \dagger	26	19	5	1	1	-	Houston, Tex.	837	460	241	83	14	14
Syracuse, N.Y.	65	48	13	3	1	3	Litte Rock, Ark.	78	56	13	7	14	13
Tranton, N.J.	32	22	6	2	2	-	New Orleans, La.	184	120	50	9	4	6
Utica, N.Y.	30	25	5	-	-	4	San Antonio. Tex.	196	125	49	11	6	17
Yankers, N.Y.	17	13	4	-	-	-	Shrevaport. La.	79	54	15	4	3	4
							Tulse, Okla.	84	51	19	9	3	4
E.N. CENTRAL	2. 506	1,565	590	154	107	140							
Alkron, Ohio	69	48	16	1	1	1	MOUNTAIN	675	400	147	64	30	32
Canton, Ohio	33	24	6	2	1	2	Albuquerque, N. Mex.	84	25	18	20	7	5
Chicago, III. $\dagger \dagger$	594	355	143	43	27	23	Colo. Springs, Colo.	48	29	11	5	3	5
Cincinnati, Ohio	194	121	41	11	13	21	Denver, Colo.	109	69	19	11	5	3
Clevaland, Ohic	181	104	51	1	18	3	Las Vegas, Nev.	64	35	15	8	1	7
Columbus. Ohio	178	109	40	10	7	24	Ogdan, Utah	29	19	5	2	1	1
Dayton, Ohio	117	69	30	8	5	6	Phoanix, Ariz.	171	100	48	12	6	3
Detroit, Mich.	310	177	77	39	8	10	Pueblo. Colc.	24	21	3	-	-	3
Evansville, Ind.	45	28	11	3	-	5	Salt Lake City, Utah	55	34	13	1	4	1
Fort Wayne, Ind.	40	27	11	1	-	7	Tucson, Ariz.	91	68	15	5	3	4
Gary, Ind.	19	8	5	3	-	-							
Grand Rapids. Mich.	75	55	13	2	4	5							
Indianapolis, Ind.	175	114	35	9	7	8	PACIFIC	2,231	1,476	484	144	58	107
Madison. Wis.	58	40	15	1	2	7	Berkeley, Calif.	22	16	4	1	1	1
Milwaukea, Wis.	156	108	34	5	5	-	Fresno, Calif.	69	48	11	5	1	2
Pearia, III.	33	23	8	2	-	9	Glendale, Calif.	37	33	3	-	1	4
Rock ford, III.	31	23	6	-	1	1	Honolulu, Hawaii	52	40	7	2	3	3
South Berd, Ind.	35	24	11	-	-	2	Long Beach, Calif.	120	78	29	8	3	1
Toledo. Ohio	103	69	22	5	4	5	Los Angeles, Calif.	785	496	183	59	16	44
Younfriown, Ohio	60	39	15	2	4	1	Oakland, Calif.	89	60	18	6	3	4
							Pasadena, Calif.	43	36	4	1	1	8
							Portland, Oreg.	126	91	26	4	3	4
W.N. CENTRAL	860	575	183	48	31	60	Sacramento, Celif.	82	46	21	¢	1	6
Des Moines, lowa	83	53	22	3	1	5	San Diego, Calif.	162	97	42	12	7	4
Duluth, Minn.	35	29	3	-	2	2	San Francisco, Calit.	177	127	32	10	4	3
Kansas City, Kans.	41	25	11	3	1	1	San Jose, Calif.	208	128	49	12	9	9
Kansas City, Mo.	121	88	23	4	4	8	Seattle, Wash.	164	114	35	10		7
Lincoln, Nebr.	39	27	7	4	-	4	Spokane, Wash.	50	35	9	3	3	3
Minneapolis, Minn.	101	72	15	5	6	4	Tacoma, Wash.	45	31	11	2	1	4
Omaha, Nebr.	89	60	17	6	4	3							
St. Louis, Mo.	185	115	48	11	7	14							
St. Paul, Minn.	73	55	12	4	1	3	TOTAL	13,927	8,954	3,220	892	436	82^{8}
Wichita, Kans.	93	51	25	8	5	16							

[^1]
Measles - United States, 1980

Provisional data indicate that reported measles cases occurred at a record low level in 1980. A total of 13,430 cases were reported through December 31, 1980-slightly lower than the 13,448 provisional cases reported for 1979 , and 1.2% lower than the final figure of 13,597 for 1979. The 1980 data represent a 50% decrease from 1978 and a 76.6% decrease from 1977 (Figure 1).

During 1980, 715 of the nation's $3,144(22.7 \%)$ counties reported measles, a decrease of 17.7% from 1979, when $869(27.6 \%)$ counties reported measles. Forty-five states and the District of Columbia each had at least 1 period of 4 consecutive weeks free of reported measles cases in 1980.

Of special interest is the low number of reported measles cases during the last 6 months of 1980. The seasonal low occurred during the summer months, as in past years, but persisted throughout the early fall and winter months of 1980. In fact, fewer than 50 cases were reported in 16 of the last 20 weeks (Figure 2). A total of 18 weeks in 1980 FIGURE 1. Reported measles cases, United States, 1968-1980*

FIGURE 2. Reported measles cases, United States, last 26 weeks of 1974-1978, 1979, and 1980

had fewer than 50 cases, whereas only 5 such low weeks were ever recorded in all the years before 1980. These record-low numbers persisted through January 1981.
Reported by Surveillance and Assessment Br, Immunization Div, Center for Prevention Services, CDC.

Influenza - United States

In the week ending January 31, 1981, 14 states reported widespread outbreaks of influenza and 17 states reported regional outbreaks of the disease. In the period November 2, 1980-January 31, 1981, all but 5 states-Delaware, Hawaii, Oklahoma, Washington, and West Virginia-and the District of Columbia reported regional or widespread outbreaks. Since last reported (1), 4 states-Louisiana, Mississippi, Oklahoma, and Vermonthave been added to the list of states reporting influenza $A(H 3 N 2)$ virus. Deaths due to pneumonia and influenza reported in 121 cities were elevated for the ninth consecutive week since December 13, 1980.

Influenza $\mathrm{A}(\mathrm{H} 1 \mathrm{~N} 1)$ virus related to $\mathrm{A} / \mathrm{Brazil} / 78$ has been isolated from ill students at an Atlanta, Georgia, elementary school. Absenteeism peaked on January 12, 1981, and involved 139 of 375 (37%) students, but no staff members. Influenza A(H1N1) virus was also isolated from ill students at 2 Atlanta universities. With the addition of 5 other states-Colorado, North Carolina, Utah, Vermont, and Washington-a total of 15 states have reported such isolates (1).
Reported by G Bohan, MD, DeKalb County Health Dept; N Gordon, MD, Georgia Institute of Technology, M Gentry, MD, Emory University Health Services, Atlanta; RK Sikes, DVM. State Epidemiologist, Georgia Dept of Human Resources; participating State Epidemiologists and Laboratory Directors,' Immunization Div, Center for Prevention Services, Virology Div, Center for Infectious Diseases, Consolidated Surveillance and Communications Activity, Epidemiology Program Office, CDC.

Reference

1. CDC. Influenza - United States. MMWR 1980;30:33-4.

Surveillance of Childhood Lead Poisoning - United States

During the fourth quarter of fiscal year 1980, 62 childhood lead poisoning prevention programs reported that 133,654 children were screened and 8,027 were identified with lead toxicity. For the entire fiscal year, programs screened 502,925 children, identified 26,519 requiring diagnostic evaluation for lead toxicity, found 21,074 with possible iron deficiency (a condition that increases the risk of lead poisoning), and identified and referred for follow-up 13,845 children lacking adequate immunizations and 7,991 children having other health problems (Table 2).

Screening is of no value without appropriate treatment and follow-up. During the year, programs reported an average of 24,000 children each quarter under clinical man' agement for lead toxicity. These children were provided ongoing medical care and services to reduce lead hazards in their environments. Approximately 2,400 children were hospitalized for treatment of lead poisoning. During the year, 11,000 children improved in health status and were released from clinical follow-up.

Since 1972, lead poisoning prevention programs, located in all sections of the country, have reported the screening of $3,350,000$ children, ages $1-5 ; 221,000(6.6 \%)$ have been identified as having lead toxicity.
Reported by the Environmental Health Services Div, Center for Environmental Health, CDC.

Childhood Lead Poisoning - Continued

TABLE 2. Results of screening in childhood lead poisoning prevention programs, United

 States, fourth quarter fiscal year 1980 (July-September 30)
"Screening Class II and Classet III \& IV defined in CDC Statement, "Preventing Lead Poisoning in Young Childrenn." April 1978

- Not cumulaive.

Na - Nor avagram not recaiving Lead Polsoning grant suptort.

Notice to Readers

Guidelines for the Prevention and Control of Nosocomial Infections

In March 1981, the Hospital Infections Branch, Center for Infectious Diseases, CDC, will mail to all U.S. hospitals a manual entitled "Guidelines for the Prevention and Control of Nosocomial Infections," containing guidelines on prevention of catheter-associated urinary tract infections and environmental control. Others who wish copies may purchase them from:

National Technical Information Service
U.S. Department of Commerce

Springfield, Virginia 22161

Merieux Institute Emergency Rabies Number Changed

Merieux Institute's emergency toll-free telephone number for information on human diploid cell rabies vaccine has been changed to 1-800-327-2842. That office should be called for emergencies relating to the availability of rabies vaccine only if the state health department cannot be contacted.
Reported by R Suarez, Merieux Institute, Miami, Florida; Respiratory and Special Pathogens Br, Viral Diseases Div, Center for Infectious Diseases, CDC.

The Marbidity and Mortality Weakly Report, circulation 102,241, is published by the Centers for Disease Control, Atlanta, Georgia. The data in this report are provisional, based on weekly telegraphs to CDC by state health departments. The reporting week concludes at close of business on Friday: compiled data on a national basis are officially released to the public on the succeeding Friday.

The editor welcomes accounts of interesting cases, outbreaks, environmental hazards, or other public health problems of current interest to health officials. Send reports to: Attn: Editor, Morbidity and Mortality Weakly Report, Centers for Disaase Control, Atlanta, Georgia 30333.

Send mailing list additions, deletions and address changes to: Attn: Distribution Services, Management Analysis and Services Office, 1-SB-419, Centers for Disease Control, Atlanta, Georgia 30333. Or call 404-329-3219. When requesting changes be sure to give your former address, including zip code and mailing list code number, or send an old address label.

[^2]Postage and Fees Paid
U.S. Department of HHS HHS 396
Director, Centers for Disease Control William H. Foege, M.D.
Director, Epidemiology Program Office Phllip S. Brachman, M.D.
Editor
Michael B. Gregg, M.D.
Managing Editor Anne D. Mather, M.A.
Mathematical Statisticlan Keewhan Choi, Ph.D.

[^0]: tRegion I: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; II: New JerSey, New York; III: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; IV: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; V. Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; VI: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; VII: lowa, Kansas, Missouri, Nebraska; VIII: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; IX: Arizona, California, Hawaii, Nevada; X: Alaska, Idaho, Oregon, Washington.

[^1]: -Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
 **Preumonia and influenza
 \dagger Because of changes in reporting methods in these 4 Pennsylvania cities, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
 \dagger Data not available this week. Figures are estimates based on average percent of regional totals.

[^2]: U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

 PUBLIC HEALTH SERVICE / CENTERS FOR DISEASE CONTROL ATLANTA, GEORGIA 30333 OFFICIAL BUSINESS

